2,582 research outputs found

    Dynamical Coulomb Blockade Observed in Nano-Sized Electrical Contacts

    Full text link
    Electrical contacts between nano-engineered systems are expected to constitute the basic building blocks of future nano-scale electronics. However, the accurate characterization and understanding of electrical contacts at the nano-scale is an experimentally challenging task. Here we employ low-temperature scanning tunneling spectroscopy to investigate the conductance of individual nano-contacts formed between flat Pb islands and their supporting substrates. We observe a suppression of the differential tunnel conductance at small bias voltages due to dynamical Coulomb blockade effects. The differential conductance spectra allow us to determine the capacitances and resistances of the electrical contacts which depend systematically on the island--substrate contact area. Calculations based on the theory of environmentally assisted tunneling agree well with the measurements.Comment: 5 pages, 3 figures, to appear in PR

    Pre main sequence: Accretion & Outflows

    Full text link
    Low-mass pre-main sequence (PMS) stars are strong X-ray sources, because they possess hot corona like their older main-sequence counterparts. Unique to young stars, however, are X-rays from accretion and outflows, and both processes are of pivotal importance for star and planet formation. We describe how X-ray data provide important insight into the physics of accretion and outflows. First, mass accreted from a circumstellar disk onto the stellar surface reaches velocities up to a few hundred km/s, fast enough to generate soft X-rays in the post-shock region of the accretion shock. X-ray observations together with laboratory experiments and numerical simulations show that the accretion geometry is complex in young stars. Specifically, the center of the accretion column is likely surrounded by material shielding the inner flow from view but itself also hot enough to emit X-rays. Second, X-rays are observed in two locations of protostellar jets: an inner stationary emission component probably related to outflow collimation and outer components, which evolve withing years and are likely related to working surfaces where the shock travels through the jet. Jet-powered X-rays appear to trace the fastest jet component and provide novel information on jet launching in young stars. We conclude that X-ray data will continue to be highly important for understanding star and planet formation, because they directly probe the origin of many emission features studied in other wavelength regimes. In addition, future X-ray missions will improve sensitivity and spectral resolution to probe key model parameters (e.g. velocities) in large samples of PMS stars.Comment: Invited chapter for the "Handbook of X-ray and Gamma-ray Astrophysics" (Eds. C. Bambi and A. Santangelo, Springer Nature, 2022), accepted (34 pages, 11 figures

    Algebraic order and the Berezinskii-Kosterlitz-Thouless transition in an exciton-polariton gas

    Get PDF
    We observe quasi-long range coherence in a two-dimensional condensate of exciton-polaritons. Our measurements are the first to confirm that the spatial correlation algebraically decays with a slow power-law, whose exponent quantitatively behaves as predicted by the Berezinskii-Kosterlitz-Thouless theory. The exciton-polaritons are created by non-resonant optical pumping of a micro-cavity sample with embedded GaAs quantum-wells at liquid helium temperature. Michelson interference is used to measure the coherence of the photons emitted by decaying exciton-polaritons

    Multifocal High-Grade Pancreatic Precursor Lesions: A Case Series and Management Recommendations

    Get PDF
    Background: The risk of developing invasive cancer in the remnant pancreas after resection of multifocal high-grade pancreatic precursor lesions is not well known. We report three patients who were followed up after resection of multifocal high-grade pancreatic intraepithelial neoplasia (PanIN)-3 or intraductal papillary mucinous neoplasia (IPMN), two of whom eventually developed invasive carcinoma. Presentation: 1) 68-year-old woman who had a laparoscopic distal pancreatectomy for multifocal mixed-type IPMN, identified as high-grade on final pathology, with negative surgical margins. During semiannual monitoring, eight years from the first surgery, the patient developed suspicious features prompting surgical resection of the body with final pathology revealing invasive ductal adenocarcinoma in the setting of IPMN. 2) 48-year-old woman who had a distal pancreatectomy for severe acute/chronic symptomatic pancreatitis, with final pathology revealing multifocal high-grade PanIN-3, with negative surgical margins. Despite semiannual monitoring, two years from the first surgery, the patient developed pancreatic adenocarcinoma with liver metastasis. 3) 55-year-old woman who had a Whipple procedure for symptomatic chronic pancreatitis, with multifocal PanIN-3 on final pathology. The patient underwent completion pancreatectomy due to symptomatology and her high-risk profile, with final pathology confirming multifocal PanIN-3. Conclusion: Multifocal high-grade dysplastic lesions of the pancreas might benefit from surgical resection

    Signatures of a Bardeen-Cooper-Schrieffer Polariton Laser

    Full text link
    Microcavity exciton polariton systems can have a wide range of macroscopic quantum effects that may be turned into better photonic technologies. Polariton Bose-Einstein condensation (BEC) and photon lasing have been widely accepted in the limits of low and high carrier densities, but identification of the expected Bardeen-Cooper-Schrieffer (BCS) state at intermediate densities remains elusive. While all three phases feature coherent photon emission, essential differences exist in their matter media. Most studies to date characterize only the photon field. Here, using a microcavity with strong- and weak-couplings co-existing in orthogonal linear polarizations, we directly measure the electronic gain in the matter media of a polariton laser, demonstrating a BCS-like polariton laser above the Mott transition density. Theoretical analysis reproduces the absorption spectra and lasing frequency shifts, revealing an electron distribution function characteristic of a polariton BCS state but modified by incoherent pumping and dissipation

    Bench-to-bedside review: Latest results in hemorrhagic shock

    Get PDF
    Hemorrhagic shock is a leading cause of death in trauma patients worldwide. Bleeding control, maintenance of tissue oxygenation with fluid resuscitation, coagulation support, and maintenance of normothermia remain mainstays of therapy for patients with hemorrhagic shock. Although now widely practised as standard in the USA and Europe, shock resuscitation strategies involving blood replacement and fluid volume loading to regain tissue perfusion and oxygenation vary between trauma centers; the primary cause of this is the scarcity of published evidence and lack of randomized controlled clinical trials. Despite enormous efforts to improve outcomes after severe hemorrhage, novel strategies based on experimental data have not resulted in profound changes in treatment philosophy. Recent clinical and experimental studies indicated the important influences of sex and genetics on pathophysiological mechanisms after hemorrhage. Those findings might provide one explanation why several promising experimental approaches have failed in the clinical arena. In this respect, more clinically relevant animal models should be used to investigate pathophysiology and novel treatment approaches. This review points out new therapeutic strategies, namely immunomodulation, cardiovascular maintenance, small volume resuscitation, and so on, that have been introduced in clinics or are in the process of being transferred from bench to bedside. Control of hemorrhage in the earliest phases of care, recognition and monitoring of individual risk factors, and therapeutic modulation of the inflammatory immune response will probably constitute the next generation of therapy in hemorrhagic shock. Further randomized controlled multicenter clinical trials are needed that utilize standardized criteria for enrolling patients, but existing ethical requirements must be maintained
    corecore